
Journal of Statistical Physics, Vol. 37, Nos. 3/4. 1984

A New Multispin Coding Algorithm for
Monte Carlo Simulation of the Ising Model

G. 0 . Wil l iams 1 and M. H. Kalos 1

Received May 4, 1984

We present a new algorithm for Monte Carlo simulation of the Ising model. The
usual serial architecture of a computer is exploited in a novel way, enabling
parallel but independent calculations to be carried out on as many spins as there
are bits in a computer word in each fundamental move. The algorithm enjoys a
substantial increase in execution speed over more usual multispin coding
algorithms. By its very nature, the algorithm constitutes a design for a special-
purpose processor.

KEY WORDS: Ising model; Monte Carlo; multispin coding; parallel com-
putation.

1. I N T R O D U C T I O N

The Ising model remains impor tant in stat ist ical physics for several reasons.
The existence of an exact solution in two dimensions ~1) and the fact that
many of its propert ies are well known in three and more dimensions allow its
use as a testing ground for new methods in the study of cri t ical phenomena.
Fur thermore , there are many unresolved questions involving both the static
and dynamic cri t ical behavior of the Ising model. ~2)

Imagine that the Ising model is being simulated by Monte Car lo
methods using some variant of the sampling algori thm of Metropol is et

al. ~ (M(RT)2). It is possible to consider this the s imulat ion of a s tochast ic
dynamic system with t ime measured by (for example) a t tempted spin flips
per site (Glauber dynamics).~6) It is now well known that, near the cri t ical
point, the autocorre la t ion t ime ("relaxat ion t ime") of the dynamic process
increases d ramat ica l ly ("cri t ical s lowing-down"). In fact, the autoeorrela t ion

Courant Institute of Mathematical Science, New York University, 251 Mercer Street, New
York, New York 10012.

283

0022 4715/84/11000283503.50/0 �9 1984 Plenum Publishing Corporation

284 Williams and Kalos

time r is roughly proportional to min(L, ~)z, where L is the linear size of the
system being simulated, ~ is the correlation length of an infinite-volume
system at the same temperature, and z is the dynamic critical exponent
(z ~ 2 for the usual kinetic Ising model in all dimensions(V)).

At the same time, the divergence of the correlation length near the
critical point requires that larger lattices be simulated in order to avoid
severe systematic errors due to finite-size effects. Specifically, one must take
L ~> ~. Thus, one must sweep a lattice of >~a sites about ~z times (the coef-
ficient is unknown) in order to obtain one independent data point. Since
statistical errors behave as N -1/2, where N is the number of effectively
independent samples, it is necessary (for example) to perform on the order of
10 6 X ~d+z elementary operations in order to obtain an accuracy of •
at one temperature (the accuracy for the critical exponent will, in general, be
greatly inferior). This is an enormous computational demand.

Attempts to resolve these difficulties can be divided into two broad
classes, according to their focus on the computational or on the physical
aspect of the problem. In the former case, one aims to considerably improve
the computational speed while remaining within the framework of the
standard single-spin-flip Metropolis-Glauber dynamics, and there are three
approaches to this problem. One obvious choice is to perform computations
on faster machines, and each new generation of super-computers has
produced a spate of theretofore unattainable results.(8) A second and more
recent approach has been the development of special-purpose computers
dedicated to the study of a single problem or class of problems. (9-12)2 A third
and more subtle approach is to reorganize the data structure and the
computational algorithm so as to produce a signifiant improvement in
computational efficiency. The multispin coding algorithms of Friedberg and
Cameron, (13) Jacobs and Rebbi, (14) and others ~15) fail into this category, as
does an unusual approach by Harding. (~) The new algorithm proposed in
the present paper is a further improvement in this direction.

A second, and often overlooked, line of attack, is to devise a radically
different physical dynamics that would have less severe critical slowing down
than the standard dynamics yet would still be computationally feasible. This
approach is still in its infancy. An early suggestion was that of Bortz et

al., (~7) who proposed a method of randomly choosing a spin to flip with a
probability proportional to the probability that the given flip be accepted.
This has been seen to result in a significant decrease in the computational
labor required for T~< T c. Recently, Kalos (18) has proposed a class of

2 References 9 and 10 describe Ising model processors. Reference 11 describes a special-
purpose computer for continuum (nonlattice) particles interacting through a continuous
potential. Reference 12 describes a special-purpose computer designed to perform lattice
gauge theory calculations.

Coding Algorithm for Monte Carlo Simulation of the Ising Model 285

methods which he calls "collective-mode Monte Carlo," and Schmidt (19) has
proposed an unorthodox treatment employing approximate Kadanoff
transformations (2~ within a Monte Carlo calculation.

In this paper, we introduce a new computational algorithm, which we
call "super-spin coding," for Monte Carlo studies of Ising models using the
standard Metropolis-Glauber dynamics. For purposes of exposition, we treat
the three-dimensional simple-cubic ferromagnetic Ising model in the absence
of an external field. The method is easily extended to other dimensions, other
lattices, antiferromagnetic couplings, and an external field. Furthermore, our
method may also be generalized to other lattice spin models.

In contrast with contemporary multispin coding algorithms, which even-
tually require each spin to be processed individually, our algorithm proceeds
entirely in parallel, simultaneously performing standard M (R T) 2 Monte
Carlo on as many spins as there are bits in a computer word. Our algorithm
has the further advantage of using nothing but Boolean operations, 3 and as
such constitutes a design for a special-purpose computer, the implications of
which we will discuss elsewhere.

In the next section, we will present our algorithm in some detail. The
third section will be devoted to a comparative timing analysis of this
algorithm and a modern multispin coding algorithm. (15) In an appendix, we
will discuss requirements on the pseudorandom numbers needed for our
algorithm and decribe the pseudorandom number generator we have selected
together with some details about its testing. A second appendix contains a
listing of our program.

2. THE M E T H O D

Since Ising spins are two-state objects, they can be represented by a
single bit in a computer word. This has long been recognized, but has not
been fully exploited, except in a remarkable paper by Friedberg and
Cameron (13) which appears to have been overlooked by many practitioners
of Ising Monte Carlo. Their technique, which was illustrated for a two-
dimensional Ising model, is a forerunner of multispin coding. Their algorithm

3 Although not part of the ANSI standard, almost all FORTRAN compilers support direct
linkage to the Boolean operations available on an assembly language level. We make use of
the logical operations AND, OR, XOR (exclusive or), each of which act in bitwise fashion
on two full-word arguments (some compilers allow more than two arguments), and
COMPL, which returns the bitwise Boolean complement of its single argument. We also
make use of the nonarithmetic SHIFT instruction in applying periodic boundary conditions;
this instruction varies greatly from machine to machine, and may appear as either left or
right and as either logical (circular) or arithmetic (zero fill).

286 Williams and Kalos

and ours both proceed entirely in parallel and are expressed in Boolean
operations. Our method, however, satisfies ergodicity.

Recall that in one variant of the M(RT) 2 algorithm one proposes to flip
a given spin, computes the change in energy of the system AE due to this
flip, and accepts or rejects the move with probability p according to the
Metropolis function

p = min[1, exp(-flAE)l (1)

where f l = 1/kBT, k s being the Boltzmann constant and T being the
temperature. While contemporary multispin coding algorithms are able to
perform a portion of the procedure on several spins in parallel, they require
that the decisions to accept or reject the proposed moves be made serially.
We stress that our algorithm performs all steps of the Monte Carlo
procedure entirely in parallel on as many spins as there are bits in a word.

The algorithm has three essential elements which we shall describe in
turn. The first is a particular data structure in which spin variables are
assigned to bits in words. The key feature is that successive spins in a
direction, say, parallel to the x axis are coded into the same bits in
successive words. Then determining the changes in energy which follow
parallel but independent attempts at flipping all spins represented in one
word simply entails comparing all bits pairwise with bits in six other words.
If the acceptance probabilities can be represented by a finite number of bits,
then the decision whether to independently accept or reject the flip of each
spin can be carried out by a succession of Boolean operations over a finite
number of bits.

In what follows, we shall assume we are dealing with a computer having
N R bits per word (in practice, we have used machines with N~ = 32, 60, and
64). Consider a simple-cubic Ising model in three dimensions of size
L • L X L, where L = kN B, k >/2. We store the spins in memory as follows:
Visualize a row of spins in the lattice parallel to the x axis (Fig. 1). The row
of spins is then placed in k successive words, each spin occupying a single
bit, with the j t h word containing spins j, j + k, j + 2k j + (N B - 1) k. An
up spin is represented as a 1, while a down spin is represented as a 0.

This procedure is continued until all the spins are stored in kaN2 B
computer words. In a FORTRAN program, these spins would most naturally
be stored in an INTEGER array IS(k, kNB, kNB) with the second and third
indices, respectively, labeling the y and z coordinates of a given row.

Consider the spins in the word IS(I1, I2, I3) (whose value we shall also
call ICI). Each spin has six nearest neighbors, two within the same row and
four in other rows. Under the imposition of periodic boundary conditions,
these other four spins lie, modulo kN~, in the words IS(I1, I2 - 1, I3), IS(I1,

Coding Algorithm for Monte Carlo Simulation of the Ising Model 287

lllllll ll;ll lll li;l;;
1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

0 1
1 4

i o 1 1 1 o l
7 10 13 16 19 22

1 1 0 0 0 1 1 0
2 5 8 11 14 17 20 23

1 1
3 6

1 1 l O 0 0
9 12 15 18 21 24

Fig. 1. One row of spins in the lattice and its representation in memory for the particular
choices k=3, N~=8, andL 24. An up spin is represented as a one and a down spin is
represented as a zero.

I 2 + 1, I3), IS(I I , I2, I 3 - 1) , and IS(I1, I2, I3 + 1). Furthermore, the
neighboring spins occupy the same bit positions as the spins in ICI. The
remaining two neighbors lie, modulo k, in IS(I1 - 1, I2, I3) and IS(I1 + 1,
I2, I3), again in corresponding bit positions. When II = 1 or I1 = k it is
necessary to perform a left or right circular shift of one of these two adjacent
words in order to maintain the correspondence among bit positions.

We now describe how to compute the change in energy associated with
the proposed flip of each spin in ICI. The exclusive or (XOR) of two bits
returns one if the bits are different and zero if they are the same. Thus,
performing the X O R of all six neighboring words with ICI produces six
words (which we shall call NN(I) , I = 1, 2,..., 6) which characterize the
energy of the N B spins in ICI.

Counting the number of one bits in a given bit position over all six of
the NN(I) then gives the number of unsatisfied bonds for that spin in ICI.
This is accomplished by a "Boolean Bubble Sort" on these six words. The
following FORTRAN fragment illustrates this procedure. The variables NN(I)
represent the results of the six X O R operations, and the variables N(I),
I = 1, 2,..., 6 represent the sorted words:

822/37/3-4-2

288 Williams and Kalos

10

20

N(1) = OR(NN(1),NN(2))

N(2) = AND(NN(1),NN(2))

DO 20 1 = 3,6

N(1) = AND(N(I-I),NN(1))

DO i0 J = 1-1,2,-i

N(J) = OR(N(J),AND(NN(1),N(J-I)))

CONTINUE

N(1) = OR(N(1),NN(1))

CONTINUE

(F. 1)

N (1) is seen to be the logical or of all the N N (I) , N (2) the logica l or of all

pa i rwise ands of the N N (I) , and so on, so that the resul t o f execut ing this

code is that the / t h bit of N (J) is a one if the spin in t h e / t h bit pos i t ion o f

I C I is in a different state f rom at least J o f its neighbors . F igure 2 i l lustrates

the effect o f this code. In prac t ice , it is not necessary to c o m p u t e N (5) and

NN(1)

NN(2)

NN(S)

NN(4)

NN(~)

NN(6)

0000111

0011011
0100111

0 o 1 o 1 1 1

N(~) irl I i ill
N(2) 011111
N(S) 001111

~(4) 000111
~(~) 0 0 0 0 1 1
N(6) 0 0 0 0 0 1

Fig. 2. An example of the effect of the Boolean Bubble Sort code. Above are shown the
original words NN(I), I = 1, 2,..., 6. Below are shown the sorted words N(I), I = 1, 2 6.
N(1) is constructed as the logical or of all the NN(I), N(2) the logical or of all pairwise ands
of the NN(I), and so on, with the result being that the bits of each column in the figure are
rearranged so that all the one bits precede all the zero bits.

Coding Algorithm for Monte Carlo Simulation of the Ising Model 289

N(6), and N(4) needs to be computed only in the presence of an external
field.

We now address the method of accepting or rejecting the proposed
move. For simplicity, we will discuss only the zero-field algorithm for the
ferromagnetic three-dimensional Ising model. The generalizations to nonzero
field, antiferromagnetic couplings and other dimensions are straightforward
and are briefly discussed at the end of this section.

In the usual M(RT) 2 algorithm, one proposes a move (a spin flip in our
case) and computes the change in evergy AE which would result from the
move. If the energy of the system is lowered, the move is accepted with
probability 1. If, on the other hand, the change in energy AE is positive, the
move is accepted with probability p = e x p (- f l A E) . This is merely a
restatement of Eq. (1).

For a three-dimensional simple-cubic Ising model, AE can take on only
certain values. If n is the number of unsatisfied bonds a given spin has in its
initial state, then

AE = 4K(n - 3) (2)

where K is the coupling constant (assumed positive for now) and n can take
on the values 0, 1,2 6. Note that the move will be accepted with
probability p = 1 if n >/3, and, if n ~< 2, the move will be accepted with
probability p = w 3-n, where w = e x p (- 4 f l K) . In practice, one draws a
random number x, uniformly distributed on [0, 1], and accepts the move if
x<~p.

Note that by writing p as the product of factors p = PlP2P3 one can
alternatively draw the random numbers Xl, x2, and x 3, and accept the move
if x i ~< Pi, i = 1, 2, 3. Thus all probabilities can be written as products of w
and 1. For certain choices of ilK, w can be represented exactly in M bits.
These properties are fully exploited by our algorithm.

Suppose that ~ = 2Mw is an integer between zero and 2 ' ~ - 1. Assume
further that s is a sequence of M uniformly distributed random bits. Then 2
represents a random integer uniformly distributed between zero and 2 M - 1.
We seek to determine if 2 < k. This can be accomplished by successively
comparing the bits of 2 and ~, beginning at the most significant bit. As soon
as two bits are found to differ, it is known that 2 and k differ. If the given bit
in ~ be a one, then 2 < ~, else ~ > ~. If no decision be reached upon
exhausting all M bits, then 2 = ~.

This primitive approach, not unlike the bit-serial subtraction techniques
used in the earliest digital computers, becomes attractive when it is
considered for the parallel determination of N B such inequalities. Consider M
successive words in a computer. Let each bit in the j th word be set to the

290 Williams and Kalos

value of the j t h bit of k. Then, if M successive words of random bits are
generated, the above bit-serial comparison can be applied in parallel, the lth
bits in each of the M succeeding random words together defining one of the
N 8 random numbers 2.

The following FORTRAN fragment illustrates one implementation of this
procedure. A bit within ID is set to one once the corresponding inequality is
decided, and a bit of IC is set to one if the corresponding 2 < ~. The
INTEGER function NYUBIT, a feedback shift register pseudorandom number
generator described in Appendix I, returns a full word of random bits. IW(J),
J = 1, 2,..., M, represents the bitwise transpose representation of ~ introduced
above:

Ic = 0

ID=0

DO i0 J = I,M

IX = XOR(IW(J) ,NYUBIT(J)) (F.2)
IC = OR(IC,AND(COMPL(ID),IX,IW(J)))

ID = OR(ID,IX)

i0 CONTINUE

The "change" word IC which results from this code is equivalent to a
"thermal" word of Friedberg and Cameron. (13) This procedure is actually
performed three times, generating change words IC 1, IC2, and IC3. The final
change word can be constructed as follows:

M0 = COMPL(N(1))

MI = XOR(N(1),N(2))

M2 = XOR(N(2),N(3))

M3 = N(3)

IC = OR(AND(M0,1CI,IC2,1C3),

+ AND(MI,ICI,IC2),

+ AND(M2,1CI),

+ M3)

(F.3)

This expression, while not the simplest that can be written, reveals the
content of IC. At this point, each bit of IC reflects the outcome of the Monte
Carlo move of the corresponding spin in ICI. A one bit in IC implies that
the move has been accepted, so that the statement

IS(II,12,13) = XOR(IC,ICI) (F.4)

generates the updated word of spins.

Coding Algorithm for Monte Carlo Simulation of the Ising Model 291

2.1. Generalizations

The extensions required for simulations in d > 3 are obvious. In d = 2,
our algorithm runs in the same time as that of Friedberg and Cameron (13)
and is to be preferred since their algorithm does not satisfy ergodicity.

Lattices other than simple cubic require only a reorganization of the
data structure. This is essentially defined by the unit cell, although
underlying sublattices will impose natural simplifications. Care must be
taken in implementing the desired boundary conditions.

The only change necessary to simulate an antiferromagnetic Ising model
is in determining the energy. Since here antiparallel bonds are of lower
energy, it is necessary to count the original number of parallel bonds. Thus,
instead of forming the exclusive ors of the six neighboring words with ICI,
one forms them with the Boolean complement of ICI. The remainder of the
algorithm proceeds as in the ferromagnetic case.

In the presence of an external field, if w ~< exp(-h) , then the probability
of accepting a move can be expressed in terms of three factors, w, exp(-h) ,
and w exp(h). These must simultaneously be written in the form w = if/2 M,
e x p (- h) = / ~ / 2 Mh, and w e x p (h) = v) + / 2 ~t+, where M + = M - M h and
~+ = r~//z is an integer. This would seem to imply that only a few fields may
be studied at any temperature. However, if one takes M sufficiently large, the
error introduced in an approximate representation of these factors becomes
negligible, and computations can be made at many values of the field.

2.2. Testing

In order to assure ourselves of the correctness of the algorithm, we have
simulated Ising models in two and three dimensions. We have observed the
energy and magnetization over a wide range of temperatures and found
agreement with existing results. (1'4'21) We have also observed the exponential
decay of magnetization for T > To. (15)

3. C O M P A R I S O N W I T H M U L T I S P I N C O D I N G

We have prepared FORTRAN benchmarking programs to carry out both
our algorithm, which we shall refer to as super-spin coding, and the usual
multispin coding algorithm as most recently refined by Kalle and
Winkelmann. (15) We have made comparisons of execution speed on a VAX-
11/780 with floating point accelerator (N B = 32 and L = 64), a Floating
Point Systems FPS-164 (Ns = 64 and L = 128), and a PUMA computer (22)
built at the Courant Institute (Ns = 60 and L = 120). This last machine

292 Williams and Kalos

executes the instruction set of the CDC 6600, although it is somewhat
slower.

In the multispin coding algorithm, N~ = N , / n b spins are coded into a
single word (nb can be three in the case of zero field, but must be four in the
presence of an external field). The change in energy due to N~ proposed spin
flips is computed in parallel, but the determination whether to accept or
reject each proposed move must be made serially. The spin-flip rate can be
expressed as

0 t R m N ~
R m -- (3)

1 + a m g ~

where a m is the ratio of the work done per spin in the serial part of the code
to the work done per word of spins in the parallel part of the code. R~ is the
number of words processed per second by the parallel part of the code. For
the computers we have used in our tests, am ~ 0.2, as may be determined by
using different values of n b or by directly examining the machine instructions
generated by the FORTRAN compiler.

Because the VAX and FPS-164 have word lengths which are not
divisible by three, we have made multispin coding computations there in four
bits (n b = 4), so that the execution times we quote for these machines are
close to what they would be in the presence of an external field. The PUMA
allows both n b = 3 and n b = 4, and we have compared execution times for
these two values there. Since the PUMA emulates the CDC 6600, no
changes were necessary in the program published by Kalle and
Winklemann, ~le) which was written for a CDC 7600. Minor changes were
made to tune their code to the VAX and FPS-164 architectures.

The super-spin coding algorithm has a rate given by

0
R ~ N ~ (4)

R s (M) = 1 + a ~ (M - 1)

where M is the number of bits needed to represent w, and a s is the ratio of
the work required per bit in making the N B parallel decisions whether or not
to accept the proposed moves to the work required for the remainder of the
algorithm. R ~ is the number of full words of spins processed per second
outside the acceptance determination, and is within a factor of two of R~ .
Note that 0 1/2. a s is seen R s N B is the rate at which we can flip spins at w =
to vary between about 6.4 and 0.6 for the machines we have used. In Table I
we present Rm, Rs(8), and R ~ for each of the machines used. In addition,
we give M C, for which R ~ (M c) = R m.

The surprising discrepancy in speeds on the FPS-164 is due in part to
the branching inherent in the multispin coding algorithm and the consequent

Coding Algorithm for Monte Carlo Simulation of the Ising Model

Table I

293

Machine N~ a N~ b Rm ~ R~(8) d R~ e Mc s

VAX-11/780 32 8 25,000 40,000 204,000 13
FPS-164 64 16 1 2 8 , 0 0 0 601,000 2,180,000 44
PUMA g 60 20 24,500 71,000 271,000 26
PUMA 60 15 22,700 71,000 271,000 28

Word size.
b Number of spins per word in multispin coding.
c The multispin coding flip rate.
a The super-spin coding flip rate when w = exp(--4flK) is represented in M = 8 bits.
e The super-spin flip rate for M = 1.
s The value of M for which multispin and super-spin coding execute in the same time.
g The PUMA computer ~22) executes the instruction set of the CDC 6600. For that machine,
we give flip rates for multispin calculations done in three (N~ = 20) and four (N~ = 15) bits.

inabil i ty of the opt imizing compiler to take full advantages of the pipelined
architecture, as it was able to with the super-spin code. However, the
pr imary reason for this difference may be seen in the dependence of R m and
R s on word size. I f one doubles the word size from 32 to 64 bits, then, for
given R 0, the super-spin rate will double, while with a m = 0 , 2 , the mult ispin
rate will only increase by about 7 %.

Since the super-spin algori thm contains no branching, it is ideally suited
to a vector machine, such as a CRAY. Vectorizing the a lgor i thm would
allow one to simulate, for example, 64 lattices s imultaneously. Compar ing
the instruction cycle t ime of the C R A Y 1 to that of the FPS-164 gives a
conservative est imate of R ~ N ~ = 3 .2 • 107 spin flips per second. I t is heart-
ening to predict a spin flipping rate from a I:ORTRAN program run on an

admit tedly very fast, but still general purpose, computer that meets the
design speed of the faster of the two Ising model processors in use today. ~9)

A C K N O W L E D G M E N T S

We wish to thank A. D. Sokal for his many contr ibut ions and
continued encouragement. This work was suppor ted in part by a grant from
the Nat iona l Science Founda t ion , No. CHE-800 112 85, and a contract from
the United States Depar tment of Energy, No. DE-AC02-76 E R O 3077.

A P P E N D I X I: P S E U D O R A N D O M N U M B E R G E N E R A T O R S

Our algori thm requires M d sequential words Yi of random bits of length
Ns to generate N ~ d random integers xj between 0 and 2 M - 1 for each word

294 Williams and Kalos

of spins processed in a d-dimensional simulation. We require that the xj pass
any usual test of randomness. One simple such test is a check for uniformity
and apparent lack of correlation in one- and two-dimensional distributions.

Note that our requirements impose stringent requirements on the lack of
sequential correlation among the y;, which in a more usual computation
scheme would themselves constitute the random numbers. Thus a
pseudorandom number generator (RNG) which meets our requirements
would, if computationally efficient, be an ideal choice for any programming
application requiring one.

Linear congruential RNGs are perhaps the most common ones in use
today. These generate pseudo-random numbers by the first-order recursion

Yi+ 1 = 2Yi + r(mod m) (A.1)

However, their less significant bits are highly correlated. We note in passing
that the particular choice of ~ = 1113, r = 0 , and m = 2 48 has seen long
service at the Courant Institute and has been extensively tested without
negative results. We refer the reader to a paper by Borosh and
Niederreiter t23) for a tabulation of many other choices together with their
properties.

A second class of RNG are a special case of those introduced by
Tausworthe, (24) which are given the name feedback shift register RNGs.
These generate pseudorandom numbers by the recursion

Yi = XOR(Yi -q+p, Yi-p) (A.2)

which is itself generated by the primitive trinomial X P + X q + 1. A large
number of primitive trinomials have been identified by Zierler and
Brillhart, (25) and the properties of some of the resulting RNGs have been
obtained by Lewis and Payne, (26) Niederreiter, t27) and Fushimi and
Tezuka. (28) Feedback shift register RNGs are computationally efficient,
address computations exceeding the single exclusive or entailed.

While there are fewer exact results available on the statistical properties
of RNGs of this type than there are for linear congruential RNGs, a number
of such results do obtain. ~26-28) For example, linear independence among the
initial p words of the sequence is necessary and sufficient to obtain the
maximum period (2 p - 1) of the generator. We recommend the initialization
procedure attributed to J. A. Greenwood by Kirkpatrick and Stoll, ~29) and
direct the reader to Ref. 28 for a formal treatment of this approach. A
second initialization procedure which we have found satisfactory, although
we can offer no proof of its validity, is a permutation of the first p elements
obtained by any other initialization procedure.

Coding Algorithm for Monte Carlo Simulation of the Ising Model 295

We have tested three pairs (q, p): (15, 127), (30, 127), and (103, 250).
The first two pairs are currently in use in the two Ising model spcial-purpose
computers, the former at Delft, (1~ and the latter at Santa Barbara. ~ The
third pair was investigated by Kirkpatrick and Stoll. (29) All three are
satisfactory for our purposes, although we note that the pair (30, 127) has
slightly better statistical properties than the other two and is to preferred as
well in terms of a loose criterion stated by Lewis and Payne.(26)

When simulating a d-dimensional model, we construct a random integer
2 from M bits taken from the same bit position of the random words
Yo, Ya,...,Y~M ~a. We have observed the xj. to exhibit no apparent
nonuniformity in one and two dimensions for d = 2, 3, and 4 and for
M = 1,2,..., 16. These empirical results, together with the results both
analytical and empirical of other authors, suggest that feedback shift register
RNGs are both reliable and efficient. We urge their adoption, particularly on
small word size machines, where good linear congruential RNGs are usually
computationally inefficient, and computationally efficient linear congruential
RNGs are usually bad.

APPENDIX 2: FORTRAN CODE FOR THE SUPER-SPIN
CODING A L G O R I T H M

We present here the central portion of our algorithm as coded for the
PUMA computer. The program is designed to simulate an Ising model on a
simple-cubic lattice of side L = 120 in three dimensions in zero field. The
number of sweeps of the lattice (NPASS), the number of bits used to
represent w (M), and ~) (Nil/) are read in and (in this version of the code)
the lattice is set to a random configuration, NYUBITV returning a vector of
words of random bits. The bitwise transpose of ~ is then constructed in the
DO 10 loop.

The DO 40 loop processes one word of spins. First the exclusive or of
each of the six neighboring words is constructed (NN1, NN2 NN6). Note
that the SHIFT instruction provided by CDC's Extended FORTRAN is a
circular shift. Other architectures provide only arithmetic shifts, and one
must construct a circular shift from two arithmetic shifts, a logical or, and
perhaps a logical and. These words are then sorted. Since this is a zero field
case, we only construct N1, N2, and N3. The masks Mi, i = 0, 1, 2, and 3,
are then words each of whose bits are one if the corresponding spin has
exactly i unsatisfied bonds in its initial state.

The acceptance determination of each of the moves is carried out in the
DO 30 loop. We have applied de Morgan's laws to the formulation discussed
in Section 2 in order to reduce the computational overhead. The variables
IC1, IC2, and IC3, as before, have bits which are set to one if the

296 Williams and Kalos

corresponding inequalities -fi < w, i = 1, 2, and 3, are satisfied. The variables
ND1, ND2, and ND3 are the Boolean complements of the variables IDi
discussed in Section 2. That is, a given bit of NDi is a one if the
corresponding inequality has not yet decided. In these expression, we also
view the random bit strings returned by NYUBITV in the vector RAN as the
Boolean complements of the random bit strings defining the random numbers
2, the complement of a random string of bits being a random string of bits.

Finally a simplified expression for the final change word IC is given,
and the updated word of spins is generated and stored in memory.

C

C

C

C

CCC

C

C

CCC

C

I0

C

20

PROGRAM PBENCH(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)

BENCHMARK PROGRAM FOR PARALLEL PROCESSING

OF THE ZERO-FIELD ISING MODEL.

INTEGER IS(120,120,2),W(10),IP(120),IM(120),RAN(3600)

DATA NB,NK,L /60,2,120/

READ (5,*) NPASS,M,NW

N-R = 3*M*L

CALL NYUBITV(IS,L*L*NK)

DO i0 J = l,H

W(J) = 0

IF (AND(I,SHIFT(NW,J-M)).EQ.I) W(J) = COMPL(0)

CONTINUE

DO 20 1 = I,L

IP(1) = 1+I

IM(1) = I-I

CONTINUE

IP(L) = 1

IM(1) = L

Coding Algorithm for Monte Carlo Simulation of the Ising Model 297

KSH = 1

DO 70 IPASS = I,~PAES

DO 60 K = I,NK

KPI = 3-K

KSH = NB-KSH

DO 50 J = I,L

JPl = IP(J)

JM1 = IM(J)

CALL NYUBITV(RAN,NR)

JJ = 0

DO 40 1 = I,L

IPI = IP(1)

IMI = IM(1)

ICI = IS(I,J,K)

NNI = XOR(ICI,IS(IPI,J,K))

NN2 = XOR(ICI,IS(IMI,J,K))

NN3 = XOR(ICI,IS(I,JPI,K))

NN4 = XOR(ICI,IS(I,JMI,K))

NN5 = XOR(ICI,IS(I,J,KPI))

NN6 = XOR(ICI,SHIFT(IS(I,J,KPI),KSH))

N2 = AND(NNI,NN2)

N1 = OR(NNI,NN2)

N3 = AND(N2,NN3)

N2 = OR(N2,AND(NI,NN3))

NI = OR(NI, NN3)

N3 = OR(N3,AND(N2,NN4))

N2 = OR(N2,AND(NI,NN4))

NI = OR(N1, NN4)

N3 = OR(N3,AND(N2,NN5))

N2 = OR(N2,AND(NI,NN5))

N1 = OR(N1, NN5)

N3 = OR(N3,AND(N2,NN6))

N2 = OR(N2,AND(NI,NN6))

N1 = OR(N1, NN6)

MO = COMPL(NI)

MI = XOR(NI,N2)

M2 = XOR(N2,N3)

M3 = N3

298

C

30

40

50

60

70

Williams and Kalos

ICI =

NDI =

IC2 =

ND2 =

IC3 =

ND3 =

JJ =

AND(W(1),RAN(JJ+I))

XOR(W(1),RAN(JJ+I))

AND(W(1),RAN(JJ+2))

XOR(W(1),RAN(JJ+2))

AND(W(1),RAN(JJ+3))

XOR(W(1),RAN(JJ+3))

JJ+3

DO 30 KK = 2,M

ICI = OR(ICI,AND(NDI,AND(W(KK),RAN(JJ+I))))

NDI = AND(NDI,XOR(W(KK),RAN(JJ+I)))

IC2 = OR(IC2,AND(ND2,AND(W(KK),RAN(JJ+2))))

ND2 = AND(ND2,XOR(W(KK),RAN(JJ+2)))

IC3 = OR(IC3,AND(ND3,AND(W(KK),RAN(JJ+3))))

ND3 = AND(ND3,XOR(W(KK),RAN(JJ+3)))

JJ = JJ+3

CONTINUE

IC = OR(M3,AND(IC3,

0R(M2,AND(IC2,

OR(MI,AND(ICI,M0))))))

IS(I,J,K) = XOR(ICI,IC)

CONTINUE

CONTINUE

CONTINUE

CONTINUE

STOP

END

R E F E R E N C E S

1. L. Onsager, Phys. Rev. 65:117 (1944).
2. Phase Transitions (Carg6se, 1980), M. Levy, J. C. Le Guillou, and J. Zinn-Justin, eds.

(Plenum Press, New York, 1982).
3. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J.

Chem. Phys. 22:881 (1954).
4. L. D. Fosdick, Phys. Rev. 116:565 (1959); L. D. Fosdick, in Methods in Computational

Physics, Vol. 1, B. Alder, S. Fernbach, and M. Rotenberg, eds. (Academic Press, New
York, 1963).

Coding Algorithm for Monte Carlo Simulation of the Ising Model 299

5. C. P. Yang, Proceedings of Symposia in Applied Mathematics, Vol. 15, 351 (American
Mathematical Society, Providence, Rhode Island, 1963).

6. Yu. Ya. Gotlib, Fiz. Tverd. Tela 3:2170 (1961) [Soy. Phys.-Solid State 3:1574 (1962)];
R. J. Glauber, J. Math. Phys. 4:294 (1963).

7. G. F. Mazenko and O. T. Vails, Phys. Rev. B 24:1419 (1981); R. Bausch, V. Dohm, H.
K. Janssen, and R. K. P. Zia, Phys. Rev. Lett. 47:1837 (198t).

8. D. Stauffer, J. Appl. Phys. 53:7980 (1982).
9. R. 13. Pearson, J. L. Richardson, and D. Toussaint, J. Comp. Phys. 51:241 (1983).

10. A. Hoogland, J. Spaa, B. Selman, and A. Compagner, J. Comp. Phys. 51:250 (1983).
11. A. F. Bakker, C. Bruin, F. van Dieren, and H. J. Hilhorst, Phys. Lett. 93A:67 (1982).
12. N. H. Christ and A. E. Terrano, IEEE Trans. Comp. C-33:344 (1984).
13. R. Friedberg and J. E. Cameron, J. Chem. Phys. 52:6049 (1970).
14. L. Jacobs and C. Rebbi, J. Comp. Phys. 41:203 (1981).
15. C. Kalle and V. Winkelmann, J. Stat. Phys. 28:629 (1982), and references therein.
16. M. P. Harding, J. Comp. Phys. 44:227 (1981).
17. A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comp. Phys. 17:10 (1975).
18. M. H. Kalos, in Proceedings of the Brookhaven Conference on Monte Carlo Methods and

Future Computer Architectures, May 1983 (unpublished).
19. K. E. Schmidt, Phys. Rev. Lett. 51:2175 (1983).
20. K. G. Wilson, Rev. Mod. Phys. 4:773 (1975).
21. D. P. Landau, Phys. Rev. B 13:2997 (1976); D. P. Landau, Phys. Rev. B 14:255 (1976).
22. R. Grishman, "The structure of the PUMA computer system," Courant Mathematics and

Computing Laboratory Report COO-3077-157 (1978).
23. I. Borosh and H. Niederreiter, BIT 23:65 (1983).
24. R. C. Tansworthe, Math. Comput. 19:201 (1965).
25. N. Zierler, Inform. Contr. 15:67 (1969); N. Zierler and J. Brillhart, Inform. Contr.

13:541 (1968); N. Zierler and J. Brillhart, Inform. Contr. 14:566 (1969).
26. T. G. Lewis and W. H. Payne, J. ACM 20:456 (1973).
27. H. Niederreiter, in Probability and Statistical Inference, W. Grossman and G. Pflug, eds.

(D. Reidel, Dordreeht, 1982).
28. M. Fushimi and S. Tezuka, Commun. ACM 26:516 (1983).
29. S. Kirkpatrick and E. P. Stoll, J. Comp. Phys. 40:517 (1981).

