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We present a new algorithm for Monte Carlo simulation of the Ising model. The 
usual serial architecture of a computer is exploited in a novel way, enabling 
parallel but independent calculations to be carried out on as many spins as there 
are bits in a computer word in each fundamental move. The algorithm enjoys a 
substantial increase in execution speed over more usual multispin coding 
algorithms. By its very nature, the algorithm constitutes a design for a special- 
purpose processor. 

KEY WORDS: Ising model; Monte Carlo; multispin coding; parallel com- 
putation. 

1. I N T R O D U C T I O N  

The Ising model  remains  impor tant  in stat ist ical  physics  for several reasons. 
The existence of  an exact solution in two dimensions ~1) and the fact that  
many  of  its propert ies  are well known in three and more dimensions allow its 
use as a testing ground for new methods in the study of  cri t ical  phenomena.  
Fur thermore ,  there are many  unresolved questions involving both the static 
and dynamic  cri t ical  behavior  of  the Ising model. ~2) 

Imagine  that  the Ising model  is being simulated by Monte Car lo  
methods using some variant  of  the sampling algori thm of Metropol is  et 

al. ~ (M(RT)2).  It is possible to consider  this the s imulat ion of  a s tochast ic  
dynamic  system with t ime measured by (for example)  a t tempted spin flips 
per site (Glauber  dynamics).~6) It is now well known that, near  the cri t ical  
point, the autocorre la t ion t ime ("relaxat ion t ime")  of  the dynamic  process  
increases d ramat ica l ly  ("cri t ical  s lowing-down").  In fact, the autoeorrela t ion 
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time r is roughly proportional to min(L, ~)z, where L is the linear size of the 
system being simulated, ~ is the correlation length of an infinite-volume 
system at the same temperature, and z is the dynamic critical exponent 
(z ~ 2 for the usual kinetic Ising model in all dimensions(V)). 

At the same time, the divergence of the correlation length near the 
critical point requires that larger lattices be simulated in order to avoid 
severe systematic errors due to finite-size effects. Specifically, one must take 
L ~> ~. Thus, one must sweep a lattice of >~a  sites about ~z times (the coef- 
ficient is unknown) in order to obtain one  independent data point. Since 
statistical errors behave as N -1/2, where N is the number of effectively 
independent samples, it is necessary (for example) to perform on the order of 
10 6 X ~d+z elementary operations in order to obtain an accuracy of •  
at one  temperature (the accuracy for the critical exponent will, in general, be 
greatly inferior). This is an enormous computational demand. 

Attempts to resolve these difficulties can be divided into two broad 
classes, according to their focus on the computational or on the physical 
aspect of the problem. In the former case, one aims to considerably improve 
the computational speed while remaining within the framework of the 
standard single-spin-flip Metropolis-Glauber dynamics, and there are three 
approaches to this problem. One obvious choice is to perform computations 
on faster machines, and each new generation of super-computers has 
produced a spate of theretofore unattainable results.(8) A second and more 
recent approach has been the development of special-purpose computers 
dedicated to the study of a single problem or class of problems. (9-12)2 A third 
and more subtle approach is to reorganize the data structure and the 
computational algorithm so as to produce a signifiant improvement in 
computational efficiency. The multispin coding algorithms of Friedberg and 
Cameron, (13) Jacobs and Rebbi, (14) and others ~15) fail into this category, as 
does an unusual approach by Harding. (~) The new algorithm proposed in 
the present paper is a further improvement in this direction. 

A second, and often overlooked, line of attack, is to devise a radically 
different physical dynamics that would have less severe critical slowing down 
than the standard dynamics yet would still be computationally feasible. This 
approach is still in its infancy. An early suggestion was that of Bortz et 

al., (~7) who proposed a method of randomly choosing a spin to flip with a 
probability proportional to the probability that the given flip be accepted. 
This has been seen to result in a significant decrease in the computational 
labor required for T~< T c. Recently, Kalos (18) has proposed a class of 

2 References 9 and 10 describe Ising model processors. Reference 11 describes a special- 
purpose computer for continuum (nonlattice) particles interacting through a continuous 
potential. Reference 12 describes a special-purpose computer designed to perform lattice 
gauge theory calculations. 
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methods which he calls "collective-mode Monte Carlo," and Schmidt (19) has 
proposed an unorthodox treatment employing approximate Kadanoff  
transformations (2~ within a Monte Carlo calculation. 

In this paper, we introduce a new computational  algorithm, which we 
call "super-spin coding," for Monte Carlo studies of  Ising models using the 
standard Metropolis-Glauber  dynamics. For  purposes of  exposition, we treat 
the three-dimensional simple-cubic ferromagnetic Ising model in the absence 
of  an external field. The method is easily extended to other dimensions, other 
lattices, antiferromagnetic couplings, and an external field. Furthermore, our 
method may  also be generalized to other lattice spin models. 

In contrast with contemporary multispin coding algorithms, which even- 
tually require each spin to be processed individually, our algorithm proceeds 
entirely in parallel, simultaneously performing standard M ( R T )  2 Monte 
Carlo on as many spins as there are bits in a computer word. Our algorithm 
has the further advantage of  using nothing but Boolean operations, 3 and as 
such constitutes a design for a special-purpose computer, the implications of  
which we will discuss elsewhere. 

In the next section, we will present our algorithm in some detail. The 
third section will be devoted to a comparative timing analysis of  this 
algorithm and a modern multispin coding algorithm. (15) In an appendix, we 
will discuss requirements on the pseudorandom numbers needed for our 
algorithm and decribe the pseudorandom number generator we have selected 
together with some details about its testing. A second appendix contains a 
listing of  our program. 

2. THE M E T H O D  

Since Ising spins are two-state objects, they can be represented by a 
single bit in a computer word. This has long been recognized, but has not 
been fully exploited, except in a remarkable paper by Friedberg and 
Cameron (13) which appears to have been overlooked by many practitioners 
of  Ising Monte Carlo. Their technique, which was illustrated for a two- 
dimensional Ising model, is a forerunner of  multispin coding. Their algorithm 

3 Although not part of the ANSI standard, almost all FORTRAN compilers support direct 
linkage to the Boolean operations available on an assembly language level. We make use of 
the logical operations AND, OR, XOR (exclusive or), each of which act in bitwise fashion 
on two full-word arguments (some compilers allow more than two arguments), and 
COMPL, which returns the bitwise Boolean complement of its single argument. We also 
make use of the nonarithmetic SHIFT instruction in applying periodic boundary conditions; 
this instruction varies greatly from machine to machine, and may appear as either left or 
right and as either logical (circular) or arithmetic (zero fill). 
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and ours both proceed entirely in parallel and are expressed in Boolean 
operations. Our method, however, satisfies ergodicity. 

Recall that in one variant of the M(RT) 2 algorithm one proposes to flip 
a given spin, computes the change in energy of the system AE due to this 
flip, and accepts or rejects the move with probability p according to the 
Metropolis function 

p = min[1, exp(-flAE)l (1) 

where f l =  1/kBT, k s being the Boltzmann constant and T being the 
temperature. While contemporary multispin coding algorithms are able to 
perform a portion of the procedure on several spins in parallel, they require 
that the decisions to accept or reject the proposed moves be made serially. 
We stress that our algorithm performs all steps of the Monte Carlo 
procedure entirely in parallel on as many spins as there are bits in a word. 

The algorithm has three essential elements which we shall describe in 
turn. The first is a particular data structure in which spin variables are 
assigned to bits in words. The key feature is that successive spins in a 
direction, say, parallel to the x axis are coded into the same bits in 
successive words. Then determining the changes in energy which follow 
parallel but independent attempts at flipping all spins represented in one 
word simply entails comparing all bits pairwise with bits in six other words. 
If the acceptance probabilities can be represented by a finite number of bits, 
then the decision whether to independently accept or reject the flip of each 
spin can be carried out by a succession of Boolean operations over a finite 
number of bits. 

In what follows, we shall assume we are dealing with a computer having 
N R bits per word (in practice, we have used machines with N~ = 32, 60, and 
64). Consider a simple-cubic Ising model in three dimensions of size 
L • L X L, where L = kN B, k >/2. We store the spins in memory as follows: 
Visualize a row of spins in the lattice parallel to the x axis (Fig. 1). The row 
of spins is then placed in k successive words, each spin occupying a single 
bit, with the j t h  word containing spins j, j + k, j + 2k ..... j + (N B - 1) k. An 
up spin is represented as a 1, while a down spin is represented as a 0. 

This procedure is continued until all the spins are stored in kaN2 B 
computer words. In a FORTRAN program, these spins would most naturally 
be stored in an INTEGER array IS(k, kNB, kNB) with the second and third 
indices, respectively, labeling the y and z coordinates of a given row. 

Consider the spins in the word IS(I1, I2, I3) (whose value we shall also 
call ICI). Each spin has six nearest neighbors, two within the same row and 
four in other rows. Under the imposition of periodic boundary conditions, 
these other four spins lie, modulo kN~, in the words IS(I1, I2 - 1, I3), IS(I1, 
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lllllll ll;ll lll li;l;; 
1 4 7 10 13 16 19 22 

2 5 8 11 14 17 20 23 
3 6 9 12 15 18 21 24 

0 1  
1 4 

i o 1 1 1 o l  
7 10 13 16 19 22 

1 1 0 0 0 1 1 0 
2 5 8 11 14 17 20 23 

1 1  
3 6 

1 1  l O 0 0  
9 12 15 18 21 24 

Fig. 1. One row of spins in the lattice and its representation in memory for the particular 
choices k=3,  N~=8, andL 24. An up spin is represented as a one and a down spin is 
represented as a zero. 

I 2 +  1, I3), IS( I I ,  I2, I 3 - 1 ) ,  and IS(I1, I2, I3 + 1). Furthermore, the 
neighboring spins occupy the same bit positions as the spins in ICI. The 
remaining two neighbors lie, modulo k, in IS(I1 - 1, I2, I3) and IS(I1 + 1, 
I2, I3), again in corresponding bit positions. When II  = 1 or I1 = k it is 
necessary to perform a left or right circular shift of  one of  these two adjacent 
words in order to maintain the correspondence among bit positions. 

We now describe how to compute the change in energy associated with 
the proposed flip of  each spin in ICI. The exclusive or (XOR)  of  two bits 
returns one if the bits are different and zero if they are the same. Thus, 
performing the X O R  of all six neighboring words with ICI  produces six 
words (which we shall call NN(I) ,  I = 1, 2,..., 6) which characterize the 
energy of  the N B spins in ICI. 

Counting the number of  one bits in a given bit position over all six of 
the NN( I )  then gives the number of unsatisfied bonds for that spin in ICI. 
This is accomplished by a "Boolean Bubble Sort" on these six words. The 
following FORTRAN fragment illustrates this procedure. The variables NN( I )  
represent the results of  the six X O R  operations, and the variables N(I),  
I = 1, 2,..., 6 represent the sorted words: 

822/37/3-4-2 
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10 

20 

N(1) = OR(NN(1),NN(2)) 

N(2) = AND(NN(1),NN(2)) 

DO 20 1 = 3,6 

N(1) = AND(N(I-I),NN(1)) 

DO i0 J = 1-1,2,-i 

N(J) = OR(N(J),AND(NN(1),N(J-I))) 

CONTINUE 

N(1) = OR(N(1),NN(1)) 

CONTINUE 

(F. 1) 

N ( 1 )  is seen to be the logical  or  of  all the N N ( I ) ,  N ( 2 )  the logica l  or of  all 

pa i rwise  ands of  the N N ( I ) ,  and so on,  so that  the resul t  o f  execut ing  this 

code  is that  the / t h  bit  of  N ( J )  is a one  if  the spin in t h e / t h  bit  pos i t ion  o f  

I C I  is in a different  state f rom at least  J o f  its neighbors .  F igure  2 i l lustrates  

the effect o f  this code. In prac t ice ,  it is not  necessary  to c o m p u t e  N ( 5 )  and 

NN(1) 

NN(2) 

NN(S) 

NN(4) 

NN(~) 

NN(6) 

0000111 

0011011 
0100111 

0 o 1 o 1 1 1  

N(~) irl I i ill 
N(2) 011111 
N(S) 001111 

~(4) 000111 
~(~) 0 0 0 0 1 1 
N(6) 0 0 0 0 0 1 

Fig. 2. An example of the effect of the Boolean Bubble Sort code. Above are shown the 
original words NN(I), I = 1, 2,..., 6. Below are shown the sorted words N(I), I = 1, 2 ..... 6. 
N(1) is constructed as the logical or of all the NN(I), N(2) the logical or of all pairwise ands 
of the NN(I), and so on, with the result being that the bits of each column in the figure are 
rearranged so that all the one bits precede all the zero bits. 



Coding Algorithm for Monte Carlo Simulation of the Ising Model 289 

N(6), and N(4) needs to be computed only in the presence of an external 
field. 

We now address the method of accepting or rejecting the proposed 
move. For simplicity, we will discuss only the zero-field algorithm for the 
ferromagnetic three-dimensional Ising model. The generalizations to nonzero 
field, antiferromagnetic couplings and other dimensions are straightforward 
and are briefly discussed at the end of this section. 

In the usual M(RT)  2 algorithm, one proposes a move (a spin flip in our 
case) and computes the change in evergy AE which would result from the 
move. If the energy of the system is lowered, the move is accepted with 
probability 1. If, on the other hand, the change in energy AE is positive, the 
move is accepted with probability p = e x p ( - f l A E ) .  This is merely a 
restatement of Eq. (1). 

For a three-dimensional simple-cubic Ising model, AE can take on only 
certain values. If n is the number of unsatisfied bonds a given spin has in its 
initial state, then 

AE = 4K(n - 3) (2) 

where K is the coupling constant (assumed positive for now) and n can take 
on the values 0, 1,2 ..... 6. Note that the move will be accepted with 
probability p = 1 if n >/3, and, if n ~< 2, the move will be accepted with 
probability p = w  3-n, where w = e x p ( - 4 f l K ) .  In practice, one draws a 
random number x, uniformly distributed on [0, 1], and accepts the move if 
x<~p. 

Note that by writing p as the product of factors p = PlP2P3 one can 
alternatively draw the random numbers Xl, x2, and x 3, and accept the move 
if x i ~< Pi, i = 1, 2, 3. Thus all probabilities can be written as products of w 
and 1. For certain choices of ilK, w can be represented exactly in M bits. 
These properties are fully exploited by our algorithm. 

Suppose that ~ = 2Mw is an integer between zero and 2 ' ~ -  1. Assume 
further that s is a sequence of M uniformly distributed random bits. Then 2 
represents a random integer uniformly distributed between zero and 2 M -  1. 
We seek to determine if 2 < k. This can be accomplished by successively 
comparing the bits of 2 and ~, beginning at the most significant bit. As soon 
as two bits are found to differ, it is known that 2 and k differ. If  the given bit 
in ~ be a one, then 2 < ~, else ~ > ~. If  no decision be reached upon 
exhausting all M bits, then 2 = ~. 

This primitive approach, not unlike the bit-serial subtraction techniques 
used in the earliest digital computers, becomes attractive when it is 
considered for the parallel determination of N B such inequalities. Consider M 
successive words in a computer. Let each bit in the j th  word be set to the 



290 Williams and Kalos 

value of the j t h  bit of k. Then, if M successive words of random bits are 
generated, the above bit-serial comparison can be applied in parallel, the lth 
bits in each of the M succeeding random words together defining one of the 
N 8 random numbers 2. 

The following FORTRAN fragment illustrates one implementation of this 
procedure. A bit within ID is set to one once the corresponding inequality is 
decided, and a bit of IC is set to one if the corresponding 2 < ~. The 
INTEGER function NYUBIT, a feedback shift register pseudorandom number 
generator described in Appendix I, returns a full word of random bits. IW(J), 
J = 1, 2,..., M, represents the bitwise transpose representation of ~ introduced 
above: 

Ic = 0 

ID=0 

DO i0 J = I,M 

IX = XOR(IW(J) ,NYUBIT(J)) (F.2) 
IC = OR(IC,AND(COMPL(ID),IX,IW(J))) 

ID = OR(ID,IX) 

i0 CONTINUE 

The "change" word IC which results from this code is equivalent to a 
"thermal" word of Friedberg and Cameron. (13) This procedure is actually 
performed three times, generating change words IC 1, IC2, and IC3. The final 
change word can be constructed as follows: 

M0 = COMPL(N(1)) 

MI = XOR(N(1),N(2)) 

M2 = XOR(N(2),N(3)) 

M3 = N(3) 

IC = OR(AND(M0,1CI,IC2,1C3), 

+ AND(MI,ICI,IC2), 

+ AND(M2,1CI), 

+ M3) 

(F.3) 

This expression, while not the simplest that can be written, reveals the 
content of IC. At this point, each bit of IC reflects the outcome of the Monte 
Carlo move of the corresponding spin in ICI. A one bit in IC implies that 
the move has been accepted, so that the statement 

IS(II,12,13) = XOR(IC,ICI) (F.4) 

generates the updated word of spins. 
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2.1. Generalizations 

The extensions required for simulations in d > 3 are obvious. In d = 2, 
our algorithm runs in the same time as that of Friedberg and Cameron (13) 
and is to be preferred since their algorithm does not satisfy ergodicity. 

Lattices other than simple cubic require only a reorganization of the 
data structure. This is essentially defined by the unit cell, although 
underlying sublattices will impose natural simplifications. Care must be 
taken in implementing the desired boundary conditions. 

The only change necessary to simulate an antiferromagnetic Ising model 
is in determining the energy. Since here antiparallel bonds are of lower 
energy, it is necessary to count the original number of parallel bonds. Thus, 
instead of forming the exclusive ors of the six neighboring words with ICI, 
one forms them with the Boolean complement of ICI. The remainder of the 
algorithm proceeds as in the ferromagnetic case. 

In the presence of an external field, if w ~< exp(-h) ,  then the probability 
of accepting a move can be expressed in terms of three factors, w, exp(-h) ,  
and w exp(h). These must simultaneously be written in the form w = if/2 M, 
e x p ( - h ) = / ~ / 2  Mh, and w e x p ( h ) = v ) + / 2  ~t+, where M + = M - M  h and 
~+ = r~//z is an integer. This would seem to imply that only a few fields may 
be studied at any temperature. However, if one takes M sufficiently large, the 
error introduced in an approximate representation of these factors becomes 
negligible, and computations can be made at many values of the field. 

2.2. Testing 

In order to assure ourselves of the correctness of the algorithm, we have 
simulated Ising models in two and three dimensions. We have observed the 
energy and magnetization over a wide range of temperatures and found 
agreement with existing results. (1'4'21) We have also observed the exponential 
decay of magnetization for T > To. (15) 

3. C O M P A R I S O N  W I T H  M U L T I S P I N  C O D I N G  

We have prepared FORTRAN benchmarking programs to carry out both 
our algorithm, which we shall refer to as super-spin coding, and the usual 
multispin coding algorithm as most recently refined by Kalle and 
Winkelmann. (15) We have made comparisons of execution speed on a VAX-  
11/780 with floating point accelerator (N B = 32 and L = 64), a Floating 
Point Systems FPS-164 (Ns = 64 and L = 128), and a PUMA computer (22) 
built at the Courant Institute (Ns = 60 and L = 120). This last machine 
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executes the instruction set of the CDC 6600, although it is somewhat 
slower. 

In the multispin coding algorithm, N~ = N , / n  b spins are coded into a 
single word (nb can be three in the case of zero field, but must be four in the 
presence of an external field). The change in energy due to N~ proposed spin 
flips is computed in parallel, but the determination whether to accept or 
reject each proposed move must be made serially. The spin-flip rate can be 
expressed as 

0 t R m N  ~ 
R m -- ( 3 )  

1 + a m g  ~ 

where a m is the ratio of the work done per spin in the serial part of the code 
to the work done per word of spins in the parallel part of the code. R~ is the 
number of words processed per second by the parallel part of the code. For 
the computers we have used in our tests, am ~ 0.2, as may be determined by 
using different values of n b or by directly examining the machine instructions 
generated by the FORTRAN compiler. 

Because the VAX and FPS-164 have word lengths which are not 
divisible by three, we have made multispin coding computations there in four 
bits (n b = 4), so that the execution times we quote for these machines are 
close to what they would be in the presence of an external field. The PUMA 
allows both n b = 3 and n b = 4, and we have compared execution times for 
these two values there. Since the PUMA emulates the CDC 6600, no 
changes were necessary in the program published by Kalle and 
Winklemann, ~le) which was written for a CDC 7600. Minor changes were 
made to tune their code to the VAX and FPS-164 architectures. 

The super-spin coding algorithm has a rate given by 

0 
R ~ N ~  (4) 

R s ( M )  = 1 + a ~ ( M -  1) 

where M is the number of bits needed to represent w, and a s is the ratio of 
the work required per bit in making the N B parallel decisions whether or not 
to accept the proposed moves to the work required for the remainder of the 
algorithm. R ~ is the number of full words of spins processed per second 
outside the acceptance determination, and is within a factor of two of R~ . 
Note that 0 1/2. a s is seen R s N  B is the rate at which we can flip spins at w = 
to vary between about 6.4 and 0.6 for the machines we have used. In Table I 
we present Rm, Rs(8), and R ~  for each of the machines used. In addition, 
we give M C, for which R ~ ( M c ) = R  m. 

The surprising discrepancy in speeds on the FPS-164 is due in part to 
the branching inherent in the multispin coding algorithm and the consequent 
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Machine N~ a N~ b Rm ~ R~(8) d R~ e Mc s 

VAX-11/780 32 8 25,000 40,000 204,000 13 
FPS-164 64 16 1 2 8 , 0 0 0  601,000 2,180,000 44 
PUMA g 60 20 24,500 71,000 271,000 26 
PUMA 60 15 22,700 71,000 271,000 28 

Word size. 
b Number of spins per word in multispin coding. 
c The multispin coding flip rate. 
a The super-spin coding flip rate when w = exp(--4flK) is represented in M = 8 bits. 
e The super-spin flip rate for M = 1. 
s The value of M for which multispin and super-spin coding execute in the same time. 
g The PUMA computer ~22) executes the instruction set of the CDC 6600. For that machine, 
we give flip rates for multispin calculations done in three (N~ = 20) and four (N~ = 15) bits. 

inabil i ty of  the opt imizing compiler  to take full advantages of  the pipelined 
architecture,  as it was able to with the super-spin code. However,  the 
pr imary  reason for this difference may  be seen in the dependence of R m and 
R s on word size. I f  one doubles the word size from 32 to 64 bits, then, for 
given R 0, the super-spin rate will double,  while with a m = 0 , 2 ,  the mult ispin 
rate will only increase by about  7 %. 

Since the super-spin algori thm contains no branching,  it is ideally suited 
to a vector machine,  such as a CRAY.  Vectorizing the a lgor i thm would 
allow one to simulate,  for example,  64 lattices s imultaneously.  Compar ing  
the instruction cycle t ime of  the C R A Y  1 to that  of  the FPS-164 gives a 
conservative est imate of  R ~ N ~  = 3 .2 •  107 spin flips per second. I t  is heart-  
ening to predict  a spin flipping rate from a I:ORTRAN program run on an 

admit tedly  very fast, but still general  purpose,  computer  that  meets the 
design speed of  the faster of  the two Ising model  processors  in use today.  ~9) 
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A P P E N D I X  I: P S E U D O R A N D O M  N U M B E R  G E N E R A T O R S  

Our  algori thm requires M d  sequential words  Yi of  random bits of  length 
Ns  to generate N ~ d  random integers xj between 0 and 2 M -  1 for each word 
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of spins processed in a d-dimensional simulation. We require that the xj pass 
any usual test of randomness. One simple such test is a check for uniformity 
and apparent lack of correlation in one- and two-dimensional distributions. 

Note that our requirements impose stringent requirements on the lack of 
sequential correlation among the y;, which in a more usual computation 
scheme would themselves constitute the random numbers. Thus a 
pseudorandom number generator (RNG) which meets our requirements 
would, if computationally efficient, be an ideal choice for any programming 
application requiring one. 

Linear congruential RNGs are perhaps the most common ones in use 
today. These generate pseudo-random numbers by the first-order recursion 

Yi+ 1 = 2Yi + r(mod m) (A.1) 

However, their less significant bits are highly correlated. We note in passing 
that the particular choice of ~ = 1113, r = 0 ,  and m = 2 48 has seen long 
service at the Courant Institute and has been extensively tested without 
negative results. We refer the reader to a paper by Borosh and 
Niederreiter t23) for a tabulation of many other choices together with their 
properties. 

A second class of RNG are a special case of those introduced by 
Tausworthe, (24) which are given the name feedback shift register RNGs. 
These generate pseudorandom numbers by the recursion 

Yi = XOR(Yi -q+p,  Yi-p) (A.2) 

which is itself generated by the primitive trinomial X P + X q +  1. A large 
number of primitive trinomials have been identified by Zierler and 
Brillhart, (25) and the properties of some of the resulting RNGs have been 
obtained by Lewis and Payne, (26) Niederreiter, t27) and Fushimi and 
Tezuka. (28) Feedback shift register RNGs are computationally efficient, 
address computations exceeding the single exclusive or entailed. 

While there are fewer exact results available on the statistical properties 
of RNGs of this type than there are for linear congruential RNGs,  a number 
of such results do obtain. ~26-28) For example, linear independence among the 
initial p words of the sequence is necessary and sufficient to obtain the 
maximum period (2 p - 1) of the generator. We recommend the initialization 
procedure attributed to J. A. Greenwood by Kirkpatrick and Stoll, ~29) and 
direct the reader to Ref. 28 for a formal treatment of this approach. A 
second initialization procedure which we have found satisfactory, although 
we can offer no proof of its validity, is a permutation of the first p elements 
obtained by any other initialization procedure. 
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We have tested three pairs (q, p): (15, 127), (30, 127), and (103, 250). 
The first two pairs are currently in use in the two Ising model spcial-purpose 
computers, the former at Delft, (1~ and the latter at Santa Barbara. ~ The 
third pair was investigated by Kirkpatrick and Stoll. (29) All three are 
satisfactory for our purposes, although we note that the pair (30, 127) has 
slightly better statistical properties than the other two and is to preferred as 
well in terms of a loose criterion stated by Lewis and Payne.(26) 

When simulating a d-dimensional model, we construct a random integer 
2 from M bits taken from the same bit position of the random words 
Yo, Ya,...,Y~M ~a. We have observed the xj. to exhibit no apparent 
nonuniformity in one and two dimensions for d =  2, 3, and 4 and for 
M =  1,2,..., 16. These empirical results, together with the results both 
analytical and empirical of other authors, suggest that feedback shift register 
RNGs are both reliable and efficient. We urge their adoption, particularly on 
small word size machines, where good linear congruential RNGs are usually 
computationally inefficient, and computationally efficient linear congruential 
RNGs are usually bad. 

APPENDIX  2: FORTRAN CODE FOR THE SUPER-SPIN 
CODING A L G O R I T H M  

We present here the central portion of our algorithm as coded for the 
PUMA computer. The program is designed to simulate an Ising model on a 
simple-cubic lattice of side L = 120 in three dimensions in zero field. The 
number of sweeps of the lattice (NPASS), the number of bits used to 
represent w (M), and ~) (Nil/) are read in and (in this version of the code) 
the lattice is set to a random configuration, NYUBITV returning a vector of 
words of random bits. The bitwise transpose of ~ is then constructed in the 
DO 10 loop. 

The  DO 40 loop processes one word of spins. First the exclusive or of 
each of the six neighboring words is constructed (NN1, NN2 ..... NN6). Note 
that the SHIFT instruction provided by CDC's  Extended FORTRAN is a 
circular shift. Other architectures provide only arithmetic shifts, and one 
must construct a circular shift from two arithmetic shifts, a logical or, and 
perhaps a logical and. These words are then sorted. Since this is a zero field 
case, we only construct N1, N2, and N3. The masks Mi, i =  0, 1, 2, and 3, 
are then words each of whose bits are one if the corresponding spin has 
exactly i unsatisfied bonds in its initial state. 

The acceptance determination of each of the moves is carried out in the 
DO 30 loop. We have applied de Morgan's laws to the formulation discussed 
in Section 2 in order to reduce the computational overhead. The variables 
IC1, IC2, and IC3, as before, have bits which are set to one if the 
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corresponding inequalities -fi < w, i = 1, 2, and 3, are satisfied. The variables 
ND1, ND2, and ND3 are the Boolean complements of the variables IDi 
discussed in Section 2. That is, a given bit of NDi  is a one if the 
corresponding inequality has not yet decided. In these expression, we also 
view the random bit strings returned by NYUBITV in the vector RAN as the 
Boolean complements of the random bit strings defining the random numbers 
2, the complement of a random string of bits being a random string of bits. 

Finally a simplified expression for the final change word IC is given, 
and the updated word of spins is generated and stored in memory. 

C 

C 

C 

C 

CCC 

C 

C 

CCC 

C 

I0 

C 

20 

PROGRAM PBENCH(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT) 

BENCHMARK PROGRAM FOR PARALLEL PROCESSING 

OF THE ZERO-FIELD ISING MODEL. 

INTEGER IS(120,120,2),W(10),IP(120),IM(120),RAN(3600) 

DATA NB,NK,L /60,2,120/ 

READ (5,*) NPASS,M,NW 

N-R = 3*M*L 

CALL NYUBITV(IS,L*L*NK) 

DO i0 J = l,H 

W(J) = 0 

IF (AND(I,SHIFT(NW,J-M)).EQ.I) W(J) = COMPL(0) 

CONTINUE 

DO 20 1 = I,L 

IP(1) = 1+I 

IM(1) = I-I 

CONTINUE 

IP(L) = 1 

IM(1) = L 
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KSH = 1 

DO 70 IPASS = I,~PAES 

DO 60 K = I,NK 

KPI = 3-K 

KSH = NB-KSH 

DO 50 J = I,L 

JPl = IP(J) 

JM1 = IM(J) 

CALL NYUBITV(RAN,NR) 

JJ = 0 

DO 40 1 = I,L 

IPI = IP(1) 

IMI = IM(1) 

ICI = IS(I,J,K) 

NNI = XOR(ICI,IS(IPI,J,K)) 

NN2 = XOR(ICI,IS(IMI,J,K)) 

NN3 = XOR(ICI,IS(I,JPI,K)) 

NN4 = XOR(ICI,IS(I,JMI,K)) 

NN5 = XOR(ICI,IS(I,J,KPI)) 

NN6 = XOR(ICI,SHIFT(IS(I,J,KPI),KSH)) 

N2 = AND(NNI,NN2) 

N1 = OR(NNI,NN2) 

N3 = AND(N2,NN3) 

N2 = OR(N2,AND(NI,NN3)) 

NI = OR(NI, NN3) 

N3 = OR(N3,AND(N2,NN4)) 

N2 = OR(N2,AND(NI,NN4)) 

NI = OR(N1, NN4) 

N3 = OR(N3,AND(N2,NN5)) 

N2 = OR(N2,AND(NI,NN5)) 

N1 = OR(N1, NN5) 

N3 = OR(N3,AND(N2,NN6)) 

N2 = OR(N2,AND(NI,NN6)) 

N1 = OR(N1, NN6) 

MO = COMPL(NI) 

MI = XOR(NI,N2) 

M2 = XOR(N2,N3) 

M3 = N3 
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ICI = 

NDI = 

IC2 = 

ND2 = 

IC3 = 

ND3 = 

JJ = 

AND(W(1),RAN(JJ+I)) 

XOR(W(1),RAN(JJ+I)) 

AND(W(1),RAN(JJ+2)) 

XOR(W(1),RAN(JJ+2)) 

AND(W(1),RAN(JJ+3)) 

XOR(W(1),RAN(JJ+3)) 

JJ+3 

DO 30 KK = 2,M 

ICI = OR(ICI,AND(NDI,AND(W(KK),RAN(JJ+I)))) 

NDI = AND(NDI,XOR(W(KK),RAN(JJ+I))) 

IC2 = OR(IC2,AND(ND2,AND(W(KK),RAN(JJ+2)))) 

ND2 = AND(ND2,XOR(W(KK),RAN(JJ+2))) 

IC3 = OR(IC3,AND(ND3,AND(W(KK),RAN(JJ+3)))) 

ND3 = AND(ND3,XOR(W(KK),RAN(JJ+3))) 

JJ = JJ+3 

CONTINUE 

IC = OR(M3,AND(IC3, 

0R(M2,AND(IC2, 

OR(MI,AND(ICI,M0)))))) 

IS(I,J,K) = XOR(ICI,IC) 

CONTINUE 

CONTINUE 

CONTINUE 

CONTINUE 

STOP 

END 
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